Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Pharmacol Sin ; 44(10): 2004-2018, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37225844

RESUMO

Doxorubicin is a common chemotherapeutic agent in clinic, but myocardial toxicity limits its use. Fibroblast growth factor (FGF) 10, a multifunctional paracrine growth factor, plays diverse roles in embryonic and postnatal heart development as well as in cardiac regeneration and repair. In this study we investigated the role of FGF10 as a potential modulator of doxorubicin-induced cardiac cytotoxicity and the underlying molecular mechanisms. Fgf10+/- mice and an inducible dominant negative FGFR2b transgenic mouse model (Rosa26rtTA; tet(O)sFgfr2b) were used to determine the effect of Fgf10 hypomorph or blocking of endogenous FGFR2b ligands activity on doxorubicin-induced myocardial injury. Acute myocardial injury was induced by a single injection of doxorubicin (25 mg/kg, i.p.). Then cardiac function was evaluated using echocardiography, and DNA damage, oxidative stress and apoptosis in cardiac tissue were assessed. We showed that doxorubicin treatment markedly decreased the expression of FGFR2b ligands including FGF10 in cardiac tissue of wild type mice, whereas Fgf10+/- mice exhibited a greater degree of oxidative stress, DNA damage and apoptosis as compared with the Fgf10+/+ control. Pre-treatment with recombinant FGF10 protein significantly attenuated doxorubicin-induced oxidative stress, DNA damage and apoptosis both in doxorubicin-treated mice and in doxorubicin-treated HL-1 cells and NRCMs. We demonstrated that FGF10 protected against doxorubicin-induced myocardial toxicity via activation of FGFR2/Pleckstrin homology-like domain family A member 1 (PHLDA1)/Akt axis. Overall, our results unveil a potent protective effect of FGF10 against doxorubicin-induced myocardial injury and identify FGFR2b/PHLDA1/Akt axis as a potential therapeutic target for patients receiving doxorubicin treatment.


Assuntos
Fator 10 de Crescimento de Fibroblastos , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos , Animais , Camundongos , Doxorrubicina , Fator 10 de Crescimento de Fibroblastos/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição
2.
Front Pharmacol ; 11: 426, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32322205

RESUMO

Ischemia-reperfusion injury (IRI), which is triggered by a transient reduction or cessation of blood flow followed by reperfusion, is a significant cause of acute kidney injury (AKI). IRI can lead to acute cell death, tissue injury, and even permanent organ dysfunction. In the clinic, IRI contributes to a higher morbidity and mortality and is associated with an unfavorable prognosis in AKI patients. Unfortunately, effective clinical drugs to protect patients against the imminent risk of renal IRI or treat already existing AKI are still lacking. Fibroblast growth factors (FGFs) are important regulators of key biological and pathological processes, such as embryonic development, metabolic homeostasis and tumorigenesis through the regulation of cell differentiation, migration, proliferation and survival. Accumulating evidence suggests that altered expression of endogenous FGFs is associated with IRI and could be instrumental in mediating the repair process. Therefore, FGFs have been proposed as potential biomarkers in the clinic. More importantly, exogenous FGF ligands have been reported to protect against renal IRI and display promising features for therapy. In this review, we summarize the evidence and mechanisms of AKI following IRI with a focus on the therapeutic capacity of several members of the FGF family to treat AKI after IRI.

3.
Front Genet ; 9: 482, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30425728

RESUMO

The tenacious prevalence of human pancreatic diseases such as diabetes mellitus and adenocarcinoma has prompted huge research interest in better understanding of pancreatic organogenesis. The plethora of signaling pathways involved in pancreas development is activated in a highly coordinated manner to assure unmitigated development and morphogenesis in vertebrates. Therefore, a complex mesenchymal-epithelial signaling network has been implicated to play a pivotal role in organogenesis through its interactions with other germ layers, specifically the endoderm. The Fibroblast Growth Factor Receptor FGFR2-IIIb splicing isoform (FGFR2b) and its high affinity ligand Fibroblast Growth Factor 10 (FGF10) are expressed in the epithelium and mesenchyme, respectively, and therefore are well positioned to transmit mesenchymal to epithelial signaling. FGF10 is a typical paracrine FGF and chiefly mediates biological responses by activating FGFR2b with heparin/heparan sulfate (HS) as cofactor. A substantial number of studies using genetically engineered mouse models have demonstrated an essential role of FGF10 in the development of many organs and tissues including the pancreas. During mouse embryonic development, FGF10 signaling is crucial for epithelial cell proliferation, maintenance of progenitor cell fate and branching morphogenesis in the pancreas. FGF10 is also implicated in pancreatic cancer, and that overexpression of FGFR2b is associated with metastatic invasion. A thorough understanding of FGF10 signaling machinery and its crosstalk with other pathways in development and pathological states may provide novel opportunities for pancreatic cancer targeted therapy and regenerative medicine.

4.
Oncotarget ; 8(60): 102067-102077, 2017 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-29254225

RESUMO

Cerebrovascular disease such as stroke is one of the most common diseases in the aging population, and neural stem cells (NSCs) transplantation may provide an alternative therapy for cerebral ischemia. However, a hostile microenvironment in the ischemic brain offers is challenging for the survival of the transplanted cells. Considering the neuroprotective role of basic fibroblast growth factor (bFGF), the present study investigated whether bFGF gene-modified NSCs could improve the neurological function deficit after transient middle cerebral artery occlusion (MCAO) in adult male Sprague-Dawley rats. These rats were intravenously injected with modified NSCs (5×106/200 µL) or vehicle 24 h after MCAO. Histological analysis was performed on days 7 and 28 after tMCAO. The survival, migration, proliferation, and differentiation of the transplanted modified C17.2 cells in the brain were improved. In addition, the intravenous infusion of NSCs and bFGF gene-modified C17.2 cells improved the functional recovery as compared to the control. Furthermore, bFGF promoted the C17.2 cell growth, survival, and differentiation into mature neurons within the infarct region. These data suggested that bFGF gene-modified NSCs have the potential to be a therapeutic agent in brain ischemia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...